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A model of an isothermal one-dimensional continuous flow chemical reactor operating at the steady
state was derived using a stochastic description of motion of the reacting molecules. The model en-
ables evaluation of the conversion of the reacting components. At the limiting parameter values the
model yields results identical to those of the simplified models conventionally used in chemical reac-
tor engineering. The model also enables the applicability of Danckwerts’ boundary conditions to be
assessed from a more general point of view.

In our previous paper1 a stochastic model of one-dimensional continuous closed mixer
(cf. Fig. 1) was set up to demonstrate the applicability of the general approach2 to the
formulation of boundary conditions for flow-through mixers and chemical reactors. An
incompressible liquid flowing through the mixer and carrying molecules of a non-reac-
ting component A was considered. The molecules were supposed to move under the
influence of deterministic as well as stochastic forces. These forces were assumed to be
linear functions of velocity of the molecule. The equation of molecular motion then has
the form of a stochastic differential equation (cf. Eqs (1) and (2) in ref.1). The inlet of
the mixer was considered to be a reflecting boundary3, the outlet was considered to be
an elastic boundary3. The ratio of the probability of reverberation of a molecule to that
of the molecule escaping from the mixer was assumed to be directly proportional to the
instantaneous molecule velocity (cf. Eq. (17) in ref.1). Such boundary conditions en-
abled a quantitative description of the circulation of the liquid and the component A
within the mixer to be formulated.

A diffusion equation (Eq. (7) in ref.1) corresponding to the stochastic differential
equations (1) and (2) in ref.1 was set up and solved for the joint probability density of
molecule position and velocity under the assumption that forces acting on the mole-
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cules are negligible in the mixer except in the space close to its inlet and outlet. In this
way, two parameter models for the component concentration profile along the mixer
(cf. Eq. (33) in ref.1) and for the liquid residence time distribution (cf. Eq. (34) in ref.1)
were derived.

In the present paper, this approach is extended to systems with reacting components,
i.e. to continuous flow chemical reactors.

THEORETICAL

The assumptions reviewed in the preceding paragraph will be completed here with the
following assumptions:

1. Component A entering the reactor via its inlet stream is consumed in a chemical
reaction occurring inside the system:

A → Products

2. The process is isothermal and steady-state.
3. The concentration of the reacting component A is low enough not to influence the

flow pattern within the system.
4. Molecules of component A are carried by the circulating liquid and reverberate at

the two system boundaries. They can escape from the system with a probability p be-
fore they are consumed by the chemical reaction.

The liquid flow and motion of molecules of component A are assumed to take place
in stream tubes occupying the whole reactor volume. The total number of stream tubes
is 2n + 1, where n is the number of molecule reverberations at the reactor outlet wall.
In n + 1 stream tubes the liquid moves in the positive direction of the longitudinal axis
of the mixer, whereas in n stream tubes the liquid moves in the opposite direction. The
concept of stream tubes enables the total reactor volume to be divided into parts with

FIG. 1
Layout of a continuous flow closed chemical reactor
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different directions of liquid motion and liquid circulation to be introduced into the
model. We will refer to the stream tube containing liquid which entered the reactor and
has not yet been reverberated at the reactor outlet as the primary stream tube. A fraction
of both the liquid and molecules of component A can leave the reactor during each
reverberation at the outlet. The remaining part swaps to another stream tube where it
moves in the opposite direction. Thus, the cross-section of the stream tubes decreases
with increasing liquid residence time.

Mass exchange between the stream tubes (e.g. by molecular diffusion) is assumed to
be negligible. We will refer to the concentration c of component A within a single
stream tube as the local concentration. The kinetic parameter of the reaction rate equa-
tion for a particular stream tube can depend on the local concentrations in other stream
tubes. A molecule of component A thus can react with molecules of A in other stream
tubes. The diffusion (mass balance) equations for component A in an isothermal
steady-state reaction then is

v 
dcn

+

dx
 = Ψ(c) cn

+  ,        (n = 0, 1, 2, …)

−v 
dcn

−

dx
 = Ψ(c) cn

−  ,        (n = 1, 2, 3, …)  , (1)

where cn
+ is the concentration of A within a stream tube in which the liquid carries the

component A with a velocity v towards the reactor outlet after the n-th reverberation at
the outlet wall (cf. Eqs (18) in ref.1). The symbol cn

− denotes the concentration of com-
ponent A during its motion from the outlet to the inlet wall. The proportionality factor
(kinetic “constant”) Ψ does not depend on temperature but can be a function of the
vector of local concentrations c = [c0

+, c1
+, …, cn

+, c1
−, c2

−, …, cn
−] . The kinetic term in Eqs

(1) is formally written for a first order chemical reaction. However, since parameter
Ψ(c) depends on the local concentrations in all stream tubes, Eqs (1) hold for general
order reactions. The concentration of component A at position x can be defined as the
average of local concentrations over the reactor cross-section perpendicular to its lon-
gitudinal axis weighed by the probability of a molecule being still trapped within the
reactor after the n-th reverberation:

ρA(x) = 






 ∑cn

+

n = 0

∞

(x) qn + ∑cn
−

n = 1

∞

(x) qn






 g  ,      (q = 1 − p)  . (2)

The quantity g,

g = 
1 − q
1 + q

  , (3)
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is the normalization factor, as can be demonstrated by considering the non-reacting
component A when all local concentrations are equal to the inlet concentration ρA0. The
probability q is a measure of the stream tube cross-section contraction during each
reverberation. With regard to Eq. (17) in ref.1, q is a function of the liquid velocity v:

q
p

 = 
v
w

  ,      w = 
2V

.

S − S0
  , (4)

where constant w depends on the liquid volumetric flow rate through the reactor V
.
 and

on the system configuration (cf. Fig. 1). If the cross-section S of the reactor interior
equals the cross-sections of the inlet and outlet openings, parameter q is zero, which is
the case of the so-called open reactor1.

By summing Eqs (1) multiplied by the term qn and the normalization factor g we
obtain

v 
dmA(x)

dx
 = Ψ(c) ρA(x) = Φ(ρA)  . (5)

The function mA(x) can be regarded as the differential concentration of component A
between the stream tubes with opposite flow directions:

mA(x) = 






 ∑cn

+

n = 0

∞

(x) qn − ∑cn
−

n = 1

∞

(x) qn






 g  . (6)

The function Φ(ρA) in Eq. (5) denotes the reaction rate. The coefficient Ψ(c) in Eqs (1)
has the form (cf. Eq. (5))

Ψ(c) = 
Φ(ρA)

ρA
  . (7)

This relation defines the proportionality parameter Ψ(c) as the kinetic parameter of the
chemical reaction. The actual form of Eq. (7) is determined by results of kinetic experi-
ments.

Equation (5) involves two functions of the position x, therefore it cannot be solved
directly. However, the function mA(x) can be expressed by means of ρA(x), and so the
result of the summing Eqs (1) is given by the ordinary differential equation

v 
dρA(x)

dx
 = Φ[ρA(x)] 

[ρA
2 (x) − ρAk

2 (1 − g2)]1⁄2

ρA(x)   , (8)
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where ρAk ≡ ρA(L) is the component A concentration at the reactor outlet (cf. Eq. (A9),
see Appendix). The boundary condition lim

x→0+
 ρA(x) = ρA0 is only satisfied if q = 0, i.e. in

an open reactor (cf. Eq. (A14)). This implies that the average concentration of compo-
nent A at the reactor inlet is lower than the concentration within the inlet stream due to
the liquid circulation when the liquid with a low concentration of A (component A is
consumed by chemical reaction) returns from the reactor outlet back to the inlet. The
concentration of component A within the primary stream tube at the reactor inlet, how-
ever, equals the inlet concentration ρA0 for any value of q (cf. the first of Eqs (A3)).

Equation (8) can only be solved by iterations because its right-hand side involves the
outlet concentration ρAk . However, it is possible to evaluate this concentration making
use of the following integral:

ρA0 ∫ 
1

ρAk/ρA0

g da
Φ[((agρA0)2 + (1 − g2) ρAk)

1⁄2]
 = 

L
v

(9)

(see Appendix). Obviously, the quantity ρAk can be evaluated by numerical methods
only. The numerical procedure, however, is quite simple. After solving Eq. (9) for ρAk,
the differential equation (8) can also be easily solved, yielding the concentration profile
of component A along the reactor. In general, this concentration is a function of liquid
velocity v. Velocity randomization4 leads to the average concentration:

ρ
__

A(x) = ∫ 
0

∞

ρA(x,v) fv(v) dv  . (10)

This equation also holds for the outlet concentration of component A, which is the
quantity that is usually sought. The probability density function for the velocity dis-
tribution is given by the relation (cf. Eq. (9) in ref.1)

fv(v) = 
(e/v)b+1

eΓ(b)  exp 



−e

v



  , (11)

where parameters e and b depend on forces acting on the molecule1 (cf. Eq. (9) in ref.1).
The above procedure enables us to compute the conversion of the reacting compo-

nent in an isothermal flow reactor at the steady state.
The first derivative of the concentration of component A at the outlet (x = L) with

respect to the longitudinal coordinate is

dρA(x)
dx |x = L ≡ δL = Φ(ρAk) 

g
v

  . (12)
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In analogy with Eq. (10) a value of this derivative averaged with respect to the velocity
distribution can be evaluated as

δ
_

L = ∫ 
0

∞

δL(v) fv(v) dv  . (13)

Unlike the commonly adopted (but somewhat speculative) Danckwerts’ boundary con-
dition for reactor outlet5, this averaged derivative will not in general be zero.

By introducing the following dimensionless variables for the liquid velocity, the lon-
gitudinal coordinate, the concentration of component A, the reaction rate, and the spa-
tial concentration derivative,

v∗  = (vϕ)/e = (vϕ)/(ωbΩ)  ,      ϕ = b(1 + 2Ω)  ,

x∗  = x/L  ,

ρA
∗  = ρA/ρA0  ,

Φ∗ (ρA
∗ ) = t

_
(Φ[ρA

∗ ρA0])/ρA0  ,

δ1
∗  = (δLL)/ρA0  , (14)

the relations derived in the previous paragraphs can be transformed into dimensionless
forms. In Eqs (14), Ω is the intensity of liquid circulation within the reactor and  t

_
 is the

mean liquid residence time1.
The probability density of the dimensionless velocity of molecules is

fv∗ (v∗ ) = fv



v∗ e
ϕ




 
e
ϕ  = exp 




−ϕ

v∗



 
(ϕ/v∗ )b+1

ϕΓ(b)   . (15)

The probability q of reverberation of a molecule at the reactor outlet can be ex-
pressed as a function of the dimensionless velocity v* and the circulation intensity Ω:

q = 
Ωv∗

Ωv∗  + 2Ω + 1
  , (16)

and parameter g is defined as

g = 
2Ω + 1

2Ωv∗  + 2Ω + 1
  . (17)
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Using Eqs (14) – (17), the dimensionless forms of Eqs (8), (9), (10), (12) and (13) can
be easily derived. For the sake of brevity, this transformation is not shown here.

The conversion of component A at the reactor outlet is obviously

ξA = 1 − ρ
__

Ak
∗   . (18)

RESULTS AND DISCUSSION

In our previous paper1, the above approach to the modelling of flow systems was dis-
cussed from the point of view of liquid residence time distribution in a continuous flow
mixer. The physical meaning of parameters Ω and b was analyzed along with the model
behavior at the limiting parameter values.

Now, the behavior of the model of an isothermal continuous flow chemical reactor
derived in the previous section will be analyzed and the results of the conversion evalu-
ation for the first order

Φ∗  = −kρA
∗ (19)

and the second order

Φ∗  = −kρA
∗ 2 (20)

chemical reaction (cf. comment post Eq. (1)) will be presented (see Figs 2 and 3). The
coefficient k in Eqs (19) and (20) is the kinetic constant for the dimensionless reaction
rate equation (k = kνt

_
/ρA

ν−1), where kν  is the dimensional kinetic constant and ν is the
order of reaction.

First, the behavior of the model will be analyzed at particular parameter values:
1. Ω → 0: It has been proved1 that this holds in an open reactor. The dimensionless

form of Eq. (9) simplifies to

∫ 
1

ρAk
∗

da
Φ∗ (a)

 = 
1
v∗   . (21)

This case was discussed in detail earlier by Kudrna4. Only two particular cases are dealt
with here.
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1a. Ω → 0 and b → ∞: This combination of parameter values corresponds to the
liquid plug-flow inside the reactor. The conversion of component A in a second order
chemical reaction for this case is shown as points A and B in Fig. 2.

FIG. 2
Conversion of reacting component as a function of parameter b for a second order chemical reaction
Φ∗  = −k ρA

∗ 2; a k = 1, b k = 10; 1 b = 1, 2 b = 2, 3 b = 4, 4 b = 50. Limiting conversion values: A
plug-flow (case 1a), ξA = 0.5; B plug-flow (case 1a), ξA = 0.909; C ideal macromixing (case 1b), ξA

= 0.404; D ideal macromixing (case 1b), ξA = 0.799; E ideal micromixing (case 2), ξA = 0.382; F
ideal micromixing (case 2), ξA = 0.730

FIG. 3
Concentration profiles of the reacting component along the reactor for a second order chemical reac-
tion Φ∗  = −k ρA

∗ 2; a k = 1, b k = 10; 1 b = 1, Ω = 0; 2 b = 30, Ω = 0; 3 b = 1, Ω = 30; 4 b = 30,
Ω = 30
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1b. Ω → 0 and b → 1: This combination of parameter values describes an ideally
stirred continuous flow reactor with liquid macromixing. The conversion of component
A for a second order chemical reaction is indicated by points C and D in Fig. 2.

2. Ω → ∞: This case describes an ideally stirred continuous flow reactor with liquid
micromixing. Integration of Eq. (9) yields the relation

ρAk
∗  − 1 = Φ∗ (ρAk

∗ )  , (22)

i.e. the dimensionless form of mass balance of the reactor. The conversion of compo-
nent A in a second order chemical reaction is indicated by points E and F in Fig. 2.

Equation (8) enables the concentration profile of the reacting component along the
reactor to be evaluated. At a zero circulation intensity (Ω → 0) and at high b values
(b = 30) the concentration profile is nearly identical with the profile inside a reactor
with the plug-flow (cf. Fig. 3, curves 2). In the ideally stirred reactor with macromixing
(Ω → 0, b = 1) the dimensionless concentration also varies markedly along the reactor
(cf. Fig. 3, curves 1). The concentration of component A at the reactor inlet (x* = 0) is
equal to the inlet concentration in both cases. At relatively high circulation intensities
(Ω = 30), on the other hand, the mixing regime inside the reactor approaches micromix-
ing and the concentration of the reacting component varies very little with position and
is nearly independent of the value of b (cf. Fig. 3, curves 3 and 4). A step change in
concentration occurs at the reactor inlet due to the lower component concentration in
the recirculating liquid stream (cf. also ref.2).

The boundary conditions based on the idea of reverberation of the reacting molecules
at the reactor outlet enabled us to express the longitudinal derivative of the reacting
component concentration at the outlet (see Eq. (12)). The dimensionless value of this
derivative converges to Φ∗ (ρAk

∗ ) when the flow regime approaches the plug-flow, because
the parameter g (see Eqs (3) and (17)) converges to unity, i.e. to the value predicted by
differential mass balance for the tube reactor with plug-flow. As the flow regime
approaches the ideally stirred reactor with micromixing, parameter g converges to zero
and the concentration derivative at the outlet converges quickly to zero as well. The
two cases are shown in Fig. 4 for the second order chemical reaction.

In the previous papers1,2 it was emphasized that diffusion models of the dynamical
type, i.e. models involving inherently distribution of velocities of the reacting mole-
cules, are more general than the conventional diffusion models of the kinematic type
describing the position vectors of molecules only and supposing implicitly infinitely
large molecule velocities at any moment. The model presented in this and the previous
papers1 involves the distribution of molecule velocities. In its general form, however,
the model is too complex. The simplifications adopted in the papers (reduction of the
spatial molecule motion to a single dimension and assumption of local action of mecha-
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nical forces in the vicinity of the reactor boundaries only) enable the formulas to be
easily solved numerically, although at the expense of generality and accuracy. So, it is
of interest to compare the presented model with the classical diffusion model

1
Pe

 
d2ρA

∗

dx∗ 2  − 
dρA

∗

dx∗  + Φ∗ (ρA
∗ ) = 0  ,     Pe = 

v
_
L

D
  , (23)

with the boundary conditions proposed by Danckwerts5, viz.

lim
x∗→ 0+

  



ρA

∗ (x∗ ) − 
1

Pe
 
dρA

∗ (x∗ )
dx∗




 = 1  ,

lim
x∗→ 1−

  
dρA

∗ (x∗ )
dx∗  = 0  . (24)

Although both models predict a concentration jump at the reactor inlet, only the dy-
namical model explains its cause. The circulation of the reacting component is respon-
sible for a decrease in its concentration within the region close to the reactor inlet,
when the component concentration equals the inlet value only within the primary
stream tube (cf. the first boundary condition for Eq. (A3)).

Unlike Danckwerts’ model, the dynamical model eliminates the discontinuity of the
concentration derivative at the reactor outlet (cf. Eqs (24)) when the liquid flow regime
inside the reactor approaches the plug-flow. At an increased circulation intensity, i.e.,

FIG. 4
Spatial derivative of concentration of the reacting component at the reactor outlet as a function of
model parameters for a second order chemical reaction Φ∗  = −k ρA

∗ 2; a k = 1, 1 b = 1, 2 b = 2, 3 b = 50;
b k = 10, 1 b = 1, 2 b = 2, 3 b = 4, 4 b = 50
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at a low Peclet number, the concentration derivative value is very low, which proves
the applicability of the speculative Danckwerts’ boundary condition in computations
requiring routine (engineering) accuracy.

 In our opinion there is no point in discussing the correctness or incorrectness of
Danckwerts’ boundary condition (see e.g. ref.6) if the conventional diffusion models
themselves fail to describe the physical reality with a sufficient precision, and may
even yield results which are in contradiction to logical reasoning7.

The relations for the variance of the dimensionless residence time (a quantity which
can be easily derived from experimental data) were used to compare the two models
quantitatively. Levenspiel and Smith8 derived a relation for the variance of the
residence time for Dankcwerts’ model (DM)

σDM
2  = 

2
Pe

 



1 − 

exp (−Pe)
Pe




  . (25)

Using Eq. (35) in ref.1, a relation for the residence time variance in the dynamical
stochastic model (DSM) was derived assuming that the Peclet number is conversely
proportional to the intensity of liquid circulation:

σDSM
2  = 1 + 

1/b − 1
(1 + h/Pe)2  . (26)

FIG. 5
Conversion of the reacting component at the reactor outlet as a function of the Peclet number a k = 1;
b k = 10; a first order reaction: Φ∗  = −k ρA

∗ , 1 dynamical stochastic model (DSM), 2 Danckwerts’
model (DM); a second order reaction: Φ∗  = −k ρA

∗ 2, 3 dynamical stochastic model (DSM), 4 Danck-
werts’ model (DM)
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By putting Eqs (25) and (26) equal, the values of b and h in Eq. (26) corresponding to
0 < 1/Pe < 10 were estimated using a nonlinear regression method9. The procedure
gave b = 8.99 and h = 0.736. These values were used for a mutual conversion of the
DM and DSM parameters in simulating computations. The conversion ξA was evaluated
for irreversible chemical reactions of the first and second orders at various Pe values
for the two models (Fig. 5). The results indicate that the difference between the two
models is relatively small at high Pe values, i.e. at a flow regime approaching closely
the plug-flow. The dynamical model yields a somewhat higher conversion than Danck-
werts’ model. At low Pe values, i.e. at a flow regime approaching ideal stirring, the
difference in conversion between the two models is negligible.

If a routine precision is sufficient, the results of the two models can be considered
equivalent. Discrimination between the models can only be made based on precise ex-
periments enabling detection of very low differences in conversion.

CONCLUSIONS

1. The proposed dynamical model of an isothermal continuous flow chemical reactor
enables the conversion of a reacting component at the steady state to be evaluated.

2. The dynamical model involving the distribution of velocities of the reacting mole-
cules can be regarded as a refinement of the conventional diffusion model, which is
widely adopted in chemical engineering. The refinement is more important from the
theoretical point of view (the model can solve some problems where the conventional
diffusion model applied to the description of real continuous reactors of mixers fails)
than from the point of view of the conversion evaluation for a particular reactor and
particular reaction kinetics.

3. The dynamical model presented in this paper suitably illustrates the general con-
clusions made previously2.

APPENDIX

Evaluation of Concentration of the Reacting Component in an Isothermal 
Continuous Flow Reactor at the Steady State

By means of the relation (5), Eq. (1) can be rearranged to

v 
d ln (cn

+)
dx

 = 
Φ(ρA)

ρA
  ,     (n = 0, 1, 2, …)  ,

−v 
d ln (cn

−)
dx

 = 
Φ(ρA)

ρA
  ,     (n = 1, 2, …)  . (A1)
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The right-hand sides of Eqs (A1) are mutually equal. Therefore, any concentration can
be expressed as a funcion of any of the remaining concentrations. Thus the individual
concentrations in Eqs (2) and (6) expressed as functions of the concentration c0

+ within
the primary stream tube have the form

cn
+(x) = Kn

+ c0
+(x)  ,     cn

−(x) = Kn
− c0

+(x)  , (A2)

where Kn
± are integration constants which can be determined using the boundary condi-

tions of Eqs (A1)

lim
x→0+

 c0
+(x) = ρA0  ;     lim

x→0+
 cn

+(x) = lim
x→0+

 cn
−(x)  ;

lim
x→L−

 cn
−(x) = lim

x→L−
 cn−1

+ (x)  ;     (n = 1, 2, …)  . (A3)

It follows from Eqs (A1) that all logarithmic decrements of the solutions are identical.
Therefore, the following relations hold:

Kn
+ = 





c0
+(0)

c0
+(L)





2n

 ;     Kn
− = 





c0
+(L)

c0
+(0)





2n

 c0
+(0)2  ,     (n = 1, 2, …)  . (A4)

Knowing the ratio c0
+(0)/c0

+(L), all integration constants Kn
± can be easily found. There-

fore, after introducing a new variable

s ≡ q 




c0
+(L)

c0
+(0)





2

(A5)

and substituting from Eqs (A2), (A4) and (A5) into Eq. (2), the following relation is
obtained:

ρA(x) = ρA0 g 






c0

∗+  ∑ 
n = 0

∞

sn + 
1

c0
∗+  ∑ 

n = 1

∞

sn 






 = 

ρA0 g(c0
∗+  + s/c0

∗+ )
1 − s

  , (A6)

where g (s < g < 1) is defined by Eq. (3) and

c0
∗+ (x) = 

c0
+(x)
ρA0

  . (A7)
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Similarly, Eq. (6) transforms to

mA(x) = 

ρA0 g
 



c0

∗+ (x) − 
s

c0
∗+ (x)





1 − s
  . (A8)

Now, the terms involving local concentrations, i.e c0
∗+ (x) and s, will be eliminated. It

follows from Eqs (A7), (A5) and the first boundary condition (A3) that c0
∗+ (L) = (s/g)1/2,

so that the following relation is obtained by substituting in Eq. (A6) at x = L:

ρAk = ρA(L) = ρA0 
1 − q
1 − s

 (s/q)1/2  . (A9)

Subtracting the square powers of Eqs (A6) and (A8) we obtain the relation

ρA
2 (x) − mA

2 (x) = 
4ρA0

2  g2s

(1 − s)2   , (A10)

which (with regard to Eqs (A9) and (3)) simplifies to

ρA
2 (x) − mA

2 (x) = ρAk
2  (1 − g2)  . (A11)

The right-hand side of this equation is independent of x, so that the following relation
holds:

dmA

dx
 = 

dρA

dx
 
ρA

mA
 = 

dρA

dx
 

ρA

[ρA
2  − ρAk

2 (1 − g2)]1/2  . (A12)

The differential equation (8) is obtained by substitution from Eq. (A12) into Eq. (5).
The initial value of the differential concentration is independent of the local concentra-
tions, because Eqs (A7) and (A8) give

lim
x→0+

 c0
∗+ (x) = 1  ,     lim

x→0+
 mA(x) = ρA0 g  . (A13)

The initial value of the (averaged) concentration of component A can be derived (after
some rearrangements) from Eqs (A11) and (A13) as

lim
x→0+

 ρA(x) = ρA0 [g
2(1 − ρAk

∗ 2 ) + ρAk
∗ 2 ]1/2  . (A14)
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This equation, along with the fact that ρAk/ρA0 = ρAk
∗  < 1, leads to the inequality

ρA(0) ≤ ρA0; the equality is only possible when q = 0 ⇒  g = 1, i.e. in the open reactor.
For simplification, a new function a = a(x) will be introduced as

a(x) = 
mA(x)
ρA0 g

  . (A15)

Substitution from Eqs (A10) and (A15) into Eq. (5) and separation of variables gives the
final differential equation

ρA0 
g da

Φ[((ρA0 g a)2 + (1 − g2) ρAk
∗ 2 )1/2]

 = 
dx
v

  . (A16)

Using Eq. (A13) at x → 0+ together with Eqs (A11) and (A15) at x → L−, the integra-
tion limits for the integral in Eq. (9) can be found in the form

lim
x→0+

 a(x) = 1  ,     lim
x→L−

 a(x) = 
ρAk

ρA0
  . (A17)

SYMBOLS

(Numbers in brackets refer to equations with the first occurrence of the symbols)
a integration variable (9)
b parameter of gamma-distribution (11)
c local component concentration (1), kg m−3

c vector of local concentrations (1), kg m−3

D dispersion coefficient (23), m2 s−1

e constant in Eq. (11), m s−1

fv probability density function for velocity (11), m−1 s
g parameter defined by Eq. (9)
h proportionality factor (26)
k kinetic constant of dimensionless reaction rate
K integration constant (A2)
L length of reactor (9), m
m differential concentration (5), kg m−3

n number of stream tubes, summation index (1)
Pe Peclet number Pe = (v

_
L)/D (23)

p probability of particle escape (2)
q probability of particle reverberation q = 1 − p (2)
S reactor cross-section area, m
S0 reactor inlet and outlet cross-section areas, m
s parameter defined by Eq. (A5)
t
_

mean residence time (14), s
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V
.

volumetric flow rate (4), m3 s−1

v velocity of liquid (1), m s−1

w constant in Eq. (4), m s−1

x spatial coordinate (1), m
Γ gamma function (11)
δ1 spatial derivative of dimensionless concentration at reactor outlet (14)
ξ conversion (18)
ρ component concentration (2), kg m−3

σ2 variance of dimensionless residence time (25)
Φ reaction rate (5), kg m−3 s−1

Ψ kinetic parameter (1), s−1

ϕ dimensionless parameter (14)
Ω circulation intensity (14)

Subscripts and Superscripts

A refers to component A
k refers to reactor outlet
n index of stream tube, summation index
0 inlet value
DM refers to Danckwerts’ model
DSM refers to the dynamical stochastic model
± refers to the positive/negative direction of motion
u
_

cross-section average of quantity u
u* dimensionless form of variable u
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